
Unite and Lead: Finding Disjunctive Cliques for1

Scheduling Problems2

Konstantin Sidorov1 #Ñ3

Delft University of Technology, The Netherlands4

Imko Marijnissen1 # Ñ5

Delft University of Technology, The Netherlands6

Emir Demirović #Ñ7

Delft University of Technology, The Netherlands8

Abstract9

Constraint programming solvers have seen much success in scheduling problems owing to their10

efficient reasoning over constraints to solve complex problems in practice. Many algorithms have been11

proposed for propagating information from a single constraint. However, inferring and exchanging12

information across multiple constraints can provide deeper insight into the global structure of a13

problem. In this work, we propose to exchange information amongst constraints by inferring the14

disjointness of tasks in scheduling problems from many constraints. We do this by (i) augmenting15

existing propagators, such as the Cumulative and nogoods, to report when pairs of tasks are disjoint,16

and (ii) leveraging this information by introducing the SelectiveDisjunctive propagator which17

generates a lower bound on the earliest completion time of cliques of disjoint tasks to determine18

conflicts. This allows us to aggregate disjointness information spanning multiple constraints to gain19

a better global overview of the problem, as well as more precise local information. We also identify a20

problem structure where an LCG solver reasoning over Cumulative constraints separately, without21

any reformulations, requires an exponential amount of time to prove infeasibility, which we both22

justify theoretically and show empirically; on the other hand, our approach solves those instances23

in polynomial time. On particular known RCPSP and RCPSP/max benchmarks, our approach24

significantly reduces the number of conflicts required to prove optimality when resource contention25

is high. Additionally, we discover new lower bounds for 16 RCPSP/max instances (closing six of26

them) and four RCPSP instances (closing one), as well as new upper bounds for two RCPSP/max27

instances and four RCPSP instances. Furthermore, we empirically analyse our proposed approach28

to determine which features are beneficial for performance, showing that finding cliques is one of29

the main bottlenecks and that detecting disjointness during search can lead to improved bounds30

on certain instances, but it generally negatively impacts learning. This work paves the way for31

reasoning over the disjointness of tasks inferred from a variety of standard constraints to discover32

novel information sourced from multiple constraints during search.33

2012 ACM Subject Classification Theory of computation → Constraint and logic programming34

Keywords and phrases Constraint Programming, Lazy Clause Generation, Propagation, Scheduling,35

Cumulative, Disjunctive36

Digital Object Identifier 10.4230/LIPIcs.CP.2025.1237

Supplementary Material The experimental results reported in this paper are obtained with:38

Software (Pumpkin and processing scripts): https://doi.org/10.5281/zenodo.1562436639

Dataset (Instances and solver logs): https://doi.org/10.5281/zenodo.1562441640

Funding Konstantin Sidorov: supported by the TU Delft AI Labs program as part of the XAIT lab.41

Imko Marijnissen: supported by the NWO/OCW, as part of the Quantum Software Consortium42

programme (project number 024.003.037 / 3368).43

1 Both authors contributed equally to this research.

© Konstantin Sidorov, Imko Marijnissen and Emir Demirović;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.sidorov@tudelft.nl
http://www.ksidorov.nl
https://orcid.org/0009-0009-0655-4200
mailto:i.c.w.m.marijnissen@tudelft.nl
https://imkomarijnissen.com
https://orcid.org/0009-0008-7086-920X
mailto:e.demirovic@tudelft.nl
https://emirdemirovic.com/
https://orcid.org/0000-0003-1587-5582
https://doi.org/10.4230/LIPIcs.CP.2025.12
https://doi.org/10.5281/zenodo.15624366
https://doi.org/10.5281/zenodo.15624416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

12:2 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Acknowledgements The authors would like to thank Maarten Flippo for the productive discussions44

on scheduling applications for constraint programming during the early phases of this project.45

1 Introduction46

Scheduling is one of the important classes of problems in the field of optimisation that can47

be loosely described as the problem of scheduling a set of tasks to satisfy certain constraints48

while optimising some objective. Constraint programming (CP) has been successful in solving49

scheduling problems. The key advantage of CP is its native support for constraints that50

capture task resource usage and efficient propagation algorithms to prune the search space,51

such as time-tabling [29] or energetic reasoning [2]. Another promising technique is exploiting52

the disjointness of tasks, as identified by Gay et al. [16] to infer bounds on tasks.53

A common trait of the previously mentioned works is that they reason over a single54

resource, since reasoning jointly over multiple resources significantly increases the com-55

putational cost. However, the benefits of stronger inference obtained by aggregating and56

exchanging information across multiple resource constraints may outweigh the drawbacks, an57

opportunity underexplored in constraint programming for scheduling.58

To illustrate the issues with single-resource reasoning, consider the following example:59

▶ Example 1. We have two tasks on different resources and aim to minimise the latest finish60

time (makespan). Individually, neither resource constraint allows us to make any non-trivial61

inferences about the makespan. However, if we combine this with the information that the62

two tasks cannot be executed at the same time, then we can see that they need to be executed63

sequentially, which allows us to derive a tighter bound on the makespan of these two tasks.64

To address this, we propose a principled solution for aggregating and exchanging information65

across constraints by reasoning over the disjointness of task pairs, based on both static66

incompatibilities (i.e., present in the original model) and dynamic incompatibilities (i.e.,67

discovered during search). Our approach consists of three core components:68

Variable creation We create Boolean variables representing whether two tasks are disjoint.69

Disjointness mining We extend the existing propagators for constraints defined in the70

problem to infer whether two tasks should be disjoint and allow propagators to use the71

Boolean variables to perform additional propagation.72

Conflict detection We introduce the SelectiveDisjunctive propagator that aggregates73

this disjointness information by deriving lower bounds on the earliest completion time of74

disjoint cliques of tasks to detect conflicts.75

By doing so, we can detect inconsistent states for disjoint tasks by (a) aggregating information76

from the whole problem in contrast to the more orthodox focus on single constraints, (b)77

allowing propagators to use this shared information, and (c) computing conflicting task groups78

during search, thus using information obtained later in the search. As finding maximum79

cliques is an NP-hard problem [23], we propose a heuristic to find disjoint cliques of tasks80

based on minimising the growth of the interval spanned by the clique when adding a task.81

To support the usefulness of our contributions, we identify an instance structure for which82

state-of-the-art solvers are guaranteed to incur an exponential number of conflicts unless83

they reformulate the problem. While state-of-the-art LCG solvers also exhibit exponential84

runtime in practice, our approach can solve the same instances in polynomial time.85

To evaluate our approach, we implemented it in Pumpkin [12] and ran experiments on86

well-known scheduling benchmarks (RCPSP and RCPSP/max). Comparing our approach to87

baseline Pumpkin and Google OR-Tools CP-SAT [31] (a state-of-the-art CP solver that has88

K. Sidorov, I. Marijnissen, E. Demirović 12:3

won many editions of the MiniZinc Challenge since 2017) shows that our approach works89

well when resource contention is high, with some instances exhibiting improvements of three90

orders of magnitude. For RCPSP/max, our approach discovers 16 new lower bounds (and91

closes six instances) and two new upper bounds; whereas for RCPSP, our approach yields92

four new upper bounds, four new lower bounds, and one closed instance. Our ablation study93

shows that the main bottleneck is finding the cliques but that it can be crucial to find the94

right cliques, whereas disjointness mining hampers performance due to poor learning on most95

instances.96

To summarise, we address the insufficiency of local information by reasoning over the97

disjointness of tasks to infer global information. We do this by (1) introducing Boolean98

variables representing the disjointness between two tasks and extending existing propagators99

to infer the values of these variables and use them for additional propagation, and (2)100

introducing the SelectiveDisjunctive propagator that heuristically finds disjoint cliques to101

detect conflicts unattainable by current approaches due to their focus on individual constraints.102

We identify an instance structure for which current techniques are guaranteed to incur an103

exponential number of conflicts, while our approach only requires a polynomial number of104

them. We experimentally evaluate our approach and observe that it is most beneficial for105

instances with high resource contention, leading to orders-of-magnitude improvements for106

specific benchmarks. Through an ablation study, we find that dynamically determining which107

disjoint cliques to focus on can be beneficial and that looking for disjointness during search108

inhibits the learning capabilities of the solver. This work paves the way for aggregating109

information across constraints to derive global information about the problem.110

The rest of the paper is structured as follows. Section 2 introduces the concepts of111

constraint programming relevant to our work. Section 3 reviews the previous research on112

disjunctive reasoning. We present and motivate our strategy for discovering and reasoning113

about disjunctive tasks in Section 4. We evaluate our approach on a range of scheduling114

problems in Section 5. Finally, we conclude and review further research directions in Section 6.115

2 Preliminaries116

Constraint programming framework A Constraint Satisfaction Problem (CSP) consists of117

a tuple (X , C,D) where X is the set of variables, C is the set of constraints which specify118

the relations between variables, and D is the domain which specifies for each variable which119

values it can take; we refer to the lowest and highest domain values as lower and upper120

bounds and denote them LB(x) and UB(x), respectively [32]. A solution I is a mapping that121

maps each variable in X to a single value in the domain of that variable in D which satisfies122

all of the constraints in C. An atomic constraint (i.e. atomic predicate) is a predicate over a123

single integer variable x ∈ X and value v signified by Jx⊗ vK where ⊗ ∈ {=,≤,≥, ̸=}.124

Constraint programming (CP) is a paradigm for solving CSPs; CP solvers enforce125

constraints through propagators, each represented with a function f : D 7→ D′ (where126

D′ ⊆ D) which removes values from D infeasible under the constraints in C. After applying127

the propagators, the solver makes a decision which creates several subproblems by splitting128

the domain of a variable into two or more parts. This process of applying propagators and129

making decisions is performed until either a solution I is found, the problem is found to be130

unsatisfiable, or a termination criterion is met.131

During the search process, CP solvers can use a technique called nogood learning [10]. A132

nogood is a partial assignment that cannot be extended to a full solution, typically rendered133

with an implication of the form N = p1∧· · ·∧pk =⇒ ⊥ with pj being the atomic constraints134

CP 2025

12:4 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

encoding the partial assignment; a nogood is unsatisfied if no pj is falsified. The purpose of135

adding nogoods is to prevent the search process from (re-)exploring parts of the search space.136

In this work, we use the lazy clause generation framework [14] to derive these nogoods. In137

this framework, it is required that the propagators explain their inferences in terms of atomic138

constraints, that is, they produce explanations of the form e1 ∧ · · · ∧ em =⇒ q.139

Cumulative constraint Cumulative is a constraint useful for many scheduling problems140

to model limited renewable resources, such as available work-hours. However, determining141

the satisfiability of a single Cumulative constraint is NP-complete [2], meaning that even142

reasoning efficiently over a single Cumulative requires reasoning over relaxations of the143

problem.144

We define the Cumulative in Definition 2, the variable si encodes the start time of task145

i, and (si + di) the finish time of i. Thus, in this constraint, we implicitly associate each146

task i ∈ T with an interval [si, si + di). We also introduce notation for the bounds of tasks147

and sets of tasks.148

▶ Definition 2. Let T be a set of tasks, and let a task i ∈ T be defined by its start variable149

si, resource usage ri ∈ Z≥0, and duration di ∈ Z≥0. Finally, let C ∈ Z≥0 be the capacity of150

the resource. Then the Cumulative constraint is the condition that at any time point τ the151

cumulative resource usage of intervals [si, si + di) covering τ does not exceed the capacity:152

∀τ ∈ Z :
∑

i∈T : si≤τ<si+di

ri ≤ C. (1)153

Given a task i ∈ T , we denote its: earliest start time ESTi = LB(si), earliest completion154

time ECTi = LB(si) + di, latest start time LSTi = UB(si), latest completion time155

LCTi = UB(si) + di, and energy ei = ri × di.156

Given a set of tasks Ω ⊆ T , we denote its: total duration dΩ =
∑

i∈Ω di, earliest157

start time ESTΩ = mini∈Ω LB(si), latest completion time LCTΩ = maxi∈Ω UB(si) + di,158

earliest completion time ECTΩ = maxΩ′⊆Ω ESTΩ′ +dΩ′ , and total energy eΩ =
∑

i∈Ω ei159

An important concept for the inference over Cumulative constraints is the mandatory part160

(Figure 1a), which is a time interval that is covered by a task regardless of its placement:161

▶ Definition 3. Given a Cumulative constraint over tasks T with capacity C, we denote162

the mandatory part MPi of a task i ∈ T as the interval MPi := [LSTi, ECTi). We define163

a height at a time point τ as total consumption of mandatory parts covering τ , that is,164

Height(τ) :=
∑

i∈T : τ∈MPi
ri. We also define a reduced height at a time point τ without165

Ω ⊆ T as Height−(τ, Ω) :=
∑

i∈T \Ω : τ∈MPi
ri. Finally, we define a profile Prx as a166

rectangle (ax, bx, hx) where ∀τ ∈ [ax, bx] : Height(τ) = hx and we assume that all profiles167

are maximal (i.e. there are no adjacent profiles with the same height).168

Disjunctive (No-Overlap) constraint In this paper, we focus on a special case of169

Cumulative where the resource has unit capacity C = 1 and each task has unit resource170

usage ri = 1, known as Disjunctive. Many inference procedures that are intractable for171

Cumulative constraints can be efficiently executed for Disjunctive constraints. The core172

inference that we use is infeasibility checking (Theorem 4), as illustrated by Figure 1b.173

▶ Theorem 4 (Overload checking). Let Ω ⊆ T be a set of variables bound by a Disjunctive174

constraint such that dΩ > LCTΩ − ESTΩ. Then the Disjunctive constraint has no feasible175

K. Sidorov, I. Marijnissen, E. Demirović 12:5

solutions [37], and any feasible solution of the CSP satisfies176 (∧
i∈Ω

Jsi ≥ ESTΩ − δ−K

)
∧

(∧
i∈Ω

Jsi ≤ LCTΩ − dω + δ+K

)
=⇒ ⊥ (2)177

for arbitrary δ−, δ+ ∈ Z≥0 satisfying LCTΩ − ESTΩ + δ− + δ+ < dΩ [38].178

ESTi LCTiECTiLSTi

Mandatory part

(a) Mandatory part illustration for a single task i.

Task 1

Task 2

d1 = 6

d2 = 6

EST1 = 0, LCT1 = 10

EST2 = 0, LCT2 = 10

(b) Overload checking leads to a conflict since
d1 + d2 > LCT{1,2} − EST{1,2}.

Figure 1 Key concepts related to Cumulative and Disjunctive constraints.

3 Related Work179

Much work focused on inferring information based on the Cumulative efficiently [29, 34].180

One of the approaches of primary interest in this work is edge-finding [29] as it is similar in181

its conflict detection procedure (also known as input/output consistency tests [13, Chapter182

4]). A common trait of these approaches [22, 18] is that the earliest completion time of183

Ω ⊆ T is used to make inferences. For example, overload checking enforces the condition184

ECTΩ > LCTΩ =⇒ ⊥, while edge finding extends this rule to ECTΩ∪{i} > LCTΩ =⇒ Ω⋖i,185

updating the bounds of t such that it does not overflow the interval bounded by the tasks in186

Ω. While edge-finding takes into account the earliest start times and latest finish times of187

the tasks (and horizontally elastic edge-finding [18] takes into account the maximum resource188

usage of the tasks), this type of reasoning does not take into account the disjointness of tasks189

and its influence on the earliest completion time of a set of tasks. Furthermore, edge-finding190

reasons over a single Cumulative, whereas we propose gathering information across several191

Cumulative constraints to infer the earliest completion time.192

Detecting disjoint pairs of tasks within a Cumulative constraints is also a viable reasoning193

strategy [16], known as time-table disjunctive reasoning. This strategy can detect disjoint194

task pairs dynamically by taking into account the time points at which other tasks are195

guaranteed to consume some amount of resource. When it detects such disjointness using196

time-tabling [29], it determines when the bounds of one of the tasks can be updated. The197

main difference with our approach is that time-table disjunctive reasoning only reasons about198

a single Cumulative constraint while we reason jointly over multiple constraints, and our199

approach infers disjointness from other constraints besides the Cumulative.200

To the best of our knowledge, the only work that addresses the reasoning over multiple201

Cumulative constraints is the work by Beldiceanu and Carlsson [5]. This work introduces202

a multi-resource Cumulatives constraint as a generalisation of the Cumulative, admitting203

negative resource consumption and lower/upper bounds on the cumulative resource usage.204

CP 2025

12:6 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

However, their reasoning makes limited use of the additional information provided by205

reasoning over multiple Cumulative constraints, nor does it take into account disjointness.206

Besides reasoning about Cumulative constraints, we consider other works that reason207

about disjunctive tasks. One area is branch-and-bound algorithms for scheduling problems.208

A common example is the resource-constrained scheduling problem (RCPSP), in which one209

of the lower bounds (LB4) on makespan is the sum of durations in a group of pairwise210

disjunctive tasks; with similar bounds being proposed for activity groups with at most two or211

at most k of them running in parallel [24]. Thus, our approach generalises that strategy while212

also working in the constraint programming context, where the tasks can be (a) arbitrarily213

bounded by the solver and (b) involved in other constraints. This type of reasoning can also214

be embedded into the search tree node representation, for example, as a scheduling scheme215

[7], which accounts for the pairs of tasks that are either disjunctive or running in parallel.216

We thus note that there are several methods that attempt to find relations between217

variables and to exploit these relations to infer information about the bounds. However, the218

relations discovered by the majority of state-of-the-art techniques are local to individual219

resource constraints or do not reason over the disjointness of tasks; contrary to that, our220

work aims to discover this disjointness dynamically during search from multiple constraints221

and use information across propagators to infer the earliest completion time of a set of tasks.222

4 Our Contribution: Finding Disjunctive Cliques223

This section will introduce our approach for aggregating information across constraints. We224

propose the following workflow:225

1. Given a set of tasks T (bound by Cumulative constraints), introduce new variables δij226

for all i, j ∈ T and reify them as δij → [si, si + di) ∩ [sj , sj + dj) = ∅. (Subsection 4.2)227

2. Introduce the reification variables δ into other constraints (such as the Cumulative and228

difference logic) and extend their propagation logic to derive implications of the form229

Jvariable boundsK =⇒ δij , and propagate variable bounds based on δ. (Subsection 4.4)230

3. Introduce our novel SelectiveDisjunctive propagator which derives lower bounds on231

the earliest competion time of sets of pairwise disjoint tasks given (a) pairs of tasks {i, j}232

such that δij = 1, and (b) the bounds on start times to discover conflicts. (Subsection 4.3)233

Our approach allows us to gain a global view across multiple constraints rather than relying234

on single constraints to independently make local inferences which causes limited information235

exchange between propagators. Thus, our approach allows them to communicate more236

elaborate facts between propagators and a CP solver, such as the disjointness of a pair of237

tasks, as opposed to existing methods focusing on a local view.238

4.1 Motivating Example: 3n Problem239

Let us first look at a case where reasoning over a single resource is insufficient: Suppose that240

we are scheduling six tasks, each with unit duration. At every time unit, we are given a fixed241

amount of resources of types I, II, and III. The amount of resources consumed by each task242

is illustrated in Figure 2a. How much time has to pass before all six tasks are completed?243

This is possible to do in six units of time by sequentially scheduling the tasks in any244

order. What cannot be inferred by reasoning over single constraints (such as time-tabling245

or energetic reasoning) is that this schedule is the fastest possible (in terms of the latest246

completion time). To see why, observe that the two yellow tasks cannot be run in parallel247

due to the shortage of resource I, and the same is true for both the two green tasks and248

the two blue tasks by similar reasoning. On the other hand, scheduling a yellow and a249

K. Sidorov, I. Marijnissen, E. Demirović 12:7

green task in parallel is not possible, as it would overflow the resource II; the same holds250

for a green and a blue task, as well as for a blue and a yellow task. By this point, we251

have considered all pairs of tasks and concluded for each of them that they cannot be run in252

parallel, making it impossible to improve upon the sequential schedule.

1

2

3

4

6

5 I
II
III

70%
40%

I
II

70%

40%

III

I
II
III

70%
40%

(a) Conflict graph of the motivating example. Edge colour indicates
resource, solid edges connect tasks jointly consuming 140%, and dotted
edges connect tasks jointly consuming 110%. All tasks of the same
colour have the same resource usage.

102
103
104
105
106

2 3 4 5
Group size n

N
um

be
r

of
co

nfl
ic

ts
to

op
tim

al
ity

(b) Number of conflicts gen-
erated by CP-SAT solving 3n
problem instances with d = 1.

Figure 2 Motivating example: scheduling problem with tasks that are pairwise disjoint due to
various resource constraints and how CP-SAT performs on these instances.

253

The previous reasoning relies only on the partition of tasks into three groups such that254

choosing one task from every two groups implies disjointness; this property holds if we255

consider groups of size n. We generalise the reasoning above not only in terms of group size256

n but also by duration d and capacity parameters p, q, M :257

▶ Definition 5. Given a group size n ∈ N≥1, duration d ∈ N≥1, and parameters p, q, M ∈ N≥1258

with 2p < M < p + q < 2q, the 3n problem instance is the constraint satisfaction problem259

defined over variables X, Y, Z with |X| = |Y | = |Z| = n and domains D(·) ≡ [1, (3n− 1)d]:260

cumulative(X ++ Y ; [d]2n; [p]n ++ [q]n; M) cumulative(Y ++ Z; [d]2n; [p]n ++ [q]n; M)261

cumulative(Z ++ X; [d]2n; [p]n ++ [q]n; M)262

As we established, any 3n instance is unsatisfiable, but to establish this without search,263

a solver needs information about all resources. However, each resource individually only264

implies that any solution occupies some time segment of duration 2n× d, and the remaining265

(n − 1)d time units have to be resolved by search. This suggests that any valid sequence266

of inferences that operates on Cumulative constraints separately has exponential length in267

terms of n.268

We prove this, and the 3n problem thus serves a role similar to pigeonhole principle269

formulas [19], but for the Cumulative models instead of propositional formulas. We show270

that any unsatisfiability proof of a 3n problem in the C-RES proof system [21] has length271

exponential in n, which shows that any LCG solver requires an exponential number of steps272

to prove unsatisfiability, as long as it introduces neither new constraints nor new variables:273

▶ Theorem 6 (3n problem intractability). Let P be a C-RES proof of a CSP instance with274

all clauses valid for any single constraint in Definition 5 for d = 1. Then |P| = Ω(1.05n).275

Proof Sketch. First, we show that P can be encoded, with extra assumptions, as a pigeonhole276

problem proof over 3n variables (Appendix A). Next, we adapt the argument by Beame and277

Pitassi [4] to verify the exponential lower bound (Appendix B). ◀278

CP 2025

12:8 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

We evaluate this insight empirically by running 3n instances for n ≤ 10 and d ≤ 5 with five279

solvers: two LCG solvers (Google OR-Tools CP-SAT [31] and Chuffed [9]), a non-learning280

CP solver (Gecode [17]), and two branch-and-cut solvers (CBC [15] and HiGHS [20]). We281

ran each solver with a 12-hour time limit, 1 CPU, and 4000 MB of RAM. Both the LCG and282

non-learning solvers exhibit exponential behaviour, as shown on Figure 2b for CP-SAT, and283

only one of the runs n ≥ 6 proved unsatisfiability. These results suggest that LCG solvers284

indeed resort to exhaustive enumeration on the 3n problem. Branch-and-cut solvers have285

exhibited better performance in solving those instances, demonstrating another similarity286

with pigeonhole principle formulas. HiGHS solved all instances with d ≤ 3 in seven minutes.287

CBC has performed worse, as it has failed to solve instances with n ≥ 7, however, it has288

successfully solved d = 1 for n ≤ 6 in less than two seconds.289

4.2 SelectiveDisjunctive Constraint290

Now that we have motivated the necessity for using global information, we describe how we use291

information concerning the disjointness of tasks across multiple constraints by introducing the292

SelectiveDisjunctive constraint. The SelectiveDisjunctive constraint (i) generalises293

the disjunctive constraint in a way that allows other propagators to indicate disjoint task294

pairs, and (ii) restricts the variables indicating this disjointness to be true when a pair of295

intervals in the assignment is disjoint. We formalise this intuition in Definition 7.296

▶ Definition 7. Let T be a set of tasks, and ∆ be the n × n matrix of Boolean variables297

indexed by T . Then a SelectiveDisjunctive(T, ∆) constraint is a condition that for any298

two tasks i, j ∈ T, i ̸= j either δij = 0 or [si, si + di) ∩ [sj , sj + dj) = ∅.299

Introducing these variables and SelectiveDisjunctive does not prune any valid solutions,300

but it allows performing two new operations: (a) fixing the variables from ∆ and (b) using301

these ∆ variables in other propagations. This allows us to encode facts—such as ‘a pair of302

tasks cannot overlap given a partial assignment of other tasks’—that are not possible to303

encode concisely using atomic constraints over the original model variables. More specifically,304

we can now observe that Definition 7 embeds the standard Disjunctive constraint (or even305

exponentially many of them); to formalise this, we first need the following notion:306

▶ Definition 8. Given a search state with domains D′ and a SelectiveDisjunctive con-307

straint, a conflict graph G|D′ is a graph with a vertex for each task i ∈ T and an edge for308

tasks {i, j} such that D′(δij) = {1} (ommitting D when it is clear from context).309

We can make two key observations based on Definition 8: (1) a conflict graph can be310

seen as an exponentially large collection of Disjunctive constraints, and (2) this is also a311

dynamically updating collection of Disjunctive constraints, provided that the other parts of312

a constraint solving engine can propagate the domains of reification variables. On top of this,313

it suggests that any reasoning for the conventional Disjunctive constraint can be deployed314

for any clique of the conflict graph. In Subsection 4.3, we discuss how to find these cliques in315

the conflict graph and how to apply the overload checking rule for the Disjunctive in this316

context.317

4.3 Overload checking for SelectiveDisjunctive318

To clarify the intuition behind our inference strategy, consider the following example:319

▶ Example 9. Let i, j, k be tasks with possible start times si ∈ [0, 2], sj ∈ [0, 2], sk ∈ [2, 3]320

and durations di = dj = 2, dk = 3 bound by a SelectiveDisjunctive constraint such that321

K. Sidorov, I. Marijnissen, E. Demirović 12:9

δij = δjk = δik = 1 in the current search state. We can observe that any feasible assignment322

also satisfies Disjunctive([si, sj , sk], [di, dj , dk]). However, this constraint is infeasible by323

overload checking for {si, sj , sk}: these three tasks jointly cover seven time units, but their324

EST is 0 and LCT is 6, leaving only six time units among these three tasks.325

▶ Note 10. The example above purposefully does not specify why the ∆-variables are true:326

the same reasoning can be carried out as soon as those intervals are established to be disjoint.327

We discuss the specific strategies for deriving those facts in Subsection 4.4.328

We formalise this intuition in Proposition 11 by reformulating Theorem 4 in the context329

of the SelectiveDisjunctive constraint.330

▶ Proposition 11 (Selective overload checking). Let T be the set of tasks bound by a331

SelectiveDisjunctive constraint, and suppose that Ω ⊆ T is a clique in the conflict332

graph G induced by the current variable domains. Then this constraint is infeasible if333

dΩ > LCTΩ − ESTΩ, and any feasible solution of the CSP satisfies334 ∧
i,j∈Ω, i ̸=j

δij

∧(∧
ω∈Ω

Jsω ≥ ESTΩ − δ−K

)
∧

(∧
ω∈Ω

Jsω ≤ LCTΩ − dω + δ+K

)
=⇒ ⊥ (3)335

for arbitrary δ−, δ+ ∈ Z≥0 satisfying LCTΩ − ESTΩ + δ− + δ+ < dΩ.336

Unlike the Disjunctive overload checking, propagation of the SelectiveDisjunctive337

requires an additional step before overload checking can be performed: finding cliques.338

Finding a clique leading to a conflict, even if it exists, is NP-complete2 and we thus propose a339

heuristic in Algorithm 1 that dynamically explores some of the cliques present in the conflict340

graph to balance the trade-off between finding “good” cliques and the time spent finding341

them. The heuristic algorithm considers each node as a root for a clique C and then adds342

tasks j ∈ T \ C which minimise LCTC∪{j} − ESTC∪{j} (breaking ties in favour of tasks with343

a longer duration) while retaining the clique property. The time complexity of Algorithm 1344

is O(|T |4).345

4.4 Disjointness mining346

We described how to deploy the SelectiveDisjunctive propagator when some of the347

reification variables have been assigned, but we have not yet described how to infer the348

domain of these reification variables. In this section, we describe strategies for disjointness349

mining, that is, discovering, possibly during the search, pairs of tasks i, j ∈ T that are350

inferred to be disjoint.351

Domain disjointness One direct source of disjointness is the current bounds of variables. The352

rule can be formally stated as ∀i, j ∈ T : [ESTi, LCTi) ∩ [ESTj , LCTj) = ∅ =⇒ Jδij = 1K.353

We perform this check during the selective overload checking (Subsection 4.3). Given a354

propagation of δij via this detection, we explain the propagation according to Equation 4.355 {
Jsi ≤ ESTj − diK ∧ Jsj ≥ ESTjK if LCTi ≤ ESTj

Jsj ≤ ESTi − djK ∧ Jsi ≥ ESTiK otherwise
=⇒ Jδij = 1K (4)356

2 This can be shown by reduction from the maximum clique problem

CP 2025

12:10 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Data: A set of tasks T with intervals [ESTi, LCTi) and durations di for all i ∈ T .
Data: A conflict graph G = (T, E).
Result: A set Ω ⊆ T satisfying dΩ > LCTΩ − ESTΩ or ⊥ if none was found.
if ∃e ∈ E : de > LCTe − ESTe then

return e ; /* Check for binary conflicts */
for t0 ∈ T do

Ω← {t0} ; /* Ω is a clique containing t0 */
S, T ← ESTt0 , LCTt0 ; /* [S, T) is an interval covered by Ω */
while dΩ ≤ LCTΩ − ESTΩ do

// Collect tasks that are disjoint with Ω
Ω+ ← {j ∈ T \ Ω : [S, T) ∩ [ESTj , LCTj) ̸= ∅ ∧ ∀i ∈ Ω, {i, j} ∈ E};
if Ω+ = ∅ then

break ; /* Cannot extend Ω into a clique, try another root */

t+ ← an element of arg minj∈Ω+

(
max(T, LCTj)−min(S, ESTj),−dj

)
;

Ω← Ω ∪ {t+}, S ← min(S, EST+
t), T ← max(T, LCT+

t); /* Extend Ω */
if dΩ > LCTΩ − ESTΩ then

return Ω;
return ⊥;
Algorithm 1 Heuristic conflict discovery procedure.

Difference logic Scheduling problems often include tasks dependent on the execution of357

other tasks. These dependencies can be provided in the form of precedence constraints, which358

provide static information about the disjointness. For example, to encode that j starts δ359

time units after i, we can use the difference logic constraint si + δ ≤ sj .360

These constraints encode stronger conditions than disjointness; for example, precedence361

can be seen as disjointness with ordering. Thus, we can deduce the disjointness variables362

from the difference constraint for appropriate parameter values (this occurs at the root level363

and requires no explanation). We formalise this in the following proposition:364

▶ Proposition 12. A pair of intervals [si, si + di), [sj , sj + dj) is disjoint (i.e., δij = 1 in any365

feasible solution) if any of the following constraints are implied by the CSP: (a) sj − si ≥ δ366

for some constant δ ≥ di, or (b) si − sj ≥ δ for some constant δ ≥ dj.367

Cumulative There are several Cumulative propagation techniques that reason about when368

the combination of scheduling a task i and a set of tasks Ω ⊆ T \ {i} leads to resource369

overflows to infer relations between tasks. In this work, we use resource profiles to determine370

when a pair of tasks is disjoint. An example of this reasoning can be seen in Example 13.

R
es

ou
rc

e
1

Task i Task j

LCTi = LCTj = 4

R
es

ou
rc

e
2

Task kTask j

ESTj = 0, LCTj = 4

ESTk = 2, LCTk = 6

R
es

ou
rc

e
3 Task k

ESTi = 0, LCTi = 4

ESTk = 2, LCTk = 6

Task i

ESTi = ESTj = 0

Figure 3 Example where profiles (marked in grey) cause disjointness between all tasks i, j, k.
371

▶ Example 13. In addition to the assumptions of Example 9, suppose that the problem372

has three Cumulative constraints as visualised in Figure 3. We can derive from Resource373

K. Sidorov, I. Marijnissen, E. Demirović 12:11

1 that i and j are disjoint (δij = 1); if they are not, then they overlap at some point374

τ∗ ∈ [max(ESTi, ESTj) = 0, min(LCTi, LCTj) = 4]. However, this would cause an overflow375

of the capacity, implying disjointness. Similar reasoning derives that δjk = 1 and δik = 1.376

In this example, just as in the motivating example (Subsection 4.1), neither of the three377

constraints is infeasible; in fact, each can only imply one disjointness relation. However, the378

intersection of those constraints is correctly declared infeasible by (i) Cumulative mining379

and (ii) SelectiveDisjunctive overload checking. Thus, combining the mining strategies380

with SelectiveDisjunctive inferences can generate conflicts that are out of reach for the381

conventional techniques for the Cumulative constraint. ⌟382

We adapt the time-table disjunctive reasoning [16] by going over all pairs of tasks i, j ∈ T ,383

and calculating their overlap oij . Then we check ∀τ ∈ oij if there exists a profile such384

that scheduling the tasks together with that profile would lead to an overflow. A simple385

implementation of this approach has time complexity O(|T |2|TT |), where TT is the set386

of existing profiles (i.e, the time-table). This reasoning is formally stated in the following387

proposition:388

▶ Proposition 14. Consider a Cumulative constraint on tasks T with capacity C. Let the389

overlap between two tasks i, j ∈ T be given by oij = [max(ESTi, ESTj), min(LCTi, LCTj)).390

Then δij is true for any feasible solution as long as there is no point τ ∈ oij such that391

Height−(τ, {i, j}) plus the resource consumption of i and j fits within the capacity:392

∀τ ∈ oij : ri + rj + Height−(τ, {i, j}) > C =⇒ Jδij = 1K393

Moreover, given a propagation of δij by a set of profiles P = {(a0, b0, h0), ..., (am, bm, hm)},394

a0 < · · · < am, we explain the propagation according to Equation 5, assuming without loss395

of generality that ESTi ≤ ESTj . For Epr, we use the big-step explanation [33].396 {
Jsj ≥ a0K ∧ Jsj ≤ bm − dj + 1K if LCTi ≥ LCTj

Jsi ≤ bm − di + 1K ∧ Jsj ≥ a0K otherwise
∧

(∧
P r∈P

Epr(Pr)
)

=⇒ Jδij = 1K (5)397

The first part of the explanation in Equation 5 is based on the observation that either one398

task subsumes the entire interval of the other (in which case the explanation depends only399

on the bounds of sj), or there is a partial overlap where one task starts at the same time or400

before the other and ends at the same time or before the other (in which case the overlapping401

part is only defined by the upper bound on si and the lower bound on sj).402

Additionally, we adapt the propagation by Gay et al. [16] and propose a rule using δ in403

Equation 6 (the rule for updating si is symmetric). The rule in Equation 6 and the rule404

proposed by Gay et al. [16] do not subsume one another since Equation 6 can propagate based405

on information gained from other constraints, while the rule by Gay et al. can propagate406

when two tasks are not fully disjoint.407

Jδij = 1K ∧ ECTi > ESTj ∧ LSTi < ECTj =⇒ Jsj ≥ ECTiK (6)408

Nogood Last, we describe how to derive disjointness from nogoods: given an unsatisfied409

nogood N , tasks i, j ∈ T are disjoint if falsifying each of the unassigned atomic constraints410

implies δij . An example can be seen in Example 15 and it is formalised in Proposition 16.411

▶ Example 15. Given two tasks i, j ∈ T such that si ∈ [0, 9], sj ∈ [7, 20] with durations412

di = 2, dj = 5, consider a nogood N = {pi = Jsi ≥ 5K, pj = Jsj ≤ 11K, ...}. Suppose that in413

the current search state, only the first two atomic constraints are unassigned, while the rest414

are satisfied. Thus, in any feasible solution either ¬pi = Jsi ≤ 4K or ¬pj = Jsj ≥ 12K holds.415

But in either case, we can derive δij via domain disjointness:416

CP 2025

12:12 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

If ¬pi is true, then LCTi = 6 ≤ ESTj = 7, implying δij .417

If ¬pj is true, then LCTj = 11 ≤ ESTi = 12, also implying δij .418

▶ Proposition 16. Let D′ be a set of domains, and suppose that a nogood N has no falsified419

atomic constraints in this domain. Then a pair of tasks i, j is disjoint if for every atomic420

constraint p ∈ N not satisfied with respect to D′, δij is implied by domain disjointness.421

Our procedure is a simplified version of Proposition 16 based on the two-watcher scheme [28,422

27]. Whenever a watcher is updated, we perform a scan to determine whether the conditions423

of Proposition 16 hold while reasoning over domain disjointness; this misses out on some424

propagations, but the time required is significantly reduced. The time complexity of this425

approach is O(|N |) for each nogood N . We explain this propagation due to an unsatisfied426

nogood N as Esn(si, sj , pi, pj) ∧
(∧

p+∈N+ p+
)

=⇒ Jδij = 1K, where N+ ⊆ N is the set of427

satisfied atomic constraints, and px = Jsx⊗ vK is one of the two undecided atomic constraints.428

See Appendix C for the definition of Esn.429

5 Experiments430

We implemented our approach as part of Pumpkin [12]. First, we present an ablation study431

in Subsection 5.1, which shows that (a) dynamic disjointness mining hinders the learning of432

the solver but that it can be beneficial on specific instances, (b) an alternative efficient sorting433

heuristic has a significant impact on the search but also leading to massive slowdowns on434

some instances, and (c) enabling the propagation in Equation 6 does not consistently change435

the performance. Next, we run a comparison on RCPSP and RCPSP/max benchmarks in436

Subsection 5.2 with baseline Pumpkin and CP-SAT, which shows that our approach can437

accelerate search by orders of magnitude on certain instances. Additionally, we compare our438

results with bounds reported in the literature and show that our approach discovers new439

lower bounds on 16 RCPSP/max instances and four RCPSP instances, as well as new upper440

bounds on two RCPSP/max instances and four RCPSP instances.441

Experiment Setup The implementation of our approach with the infrastructure for running442

the experiments is available in the supplementary material. We ran our experiments on443

DelftBlue [11], with each run of an instance being allocated a single core of an Intel Xeon444

E5-6248R 24C 3.0GHz processor and 4000 MB of RAM with a time limit of one hour.445

For our evaluation, we use two models that minimise the latest completion time of all tasks446

(makespan). One is RCPSP/max, a collection of Cumulative constraints and precedence447

relations encoded by the constraints si + γij ≤ sj with arbitrary constants γij ∈ Z; we use448

the test suites distributed by PSPLIB [25], namely, C, D, UBO, and SM suites. We also449

use RCPSP, a special case of RCPSP/max where all precedence relations have the form450

si +di ≤ sj ; we use the data files provided in the MiniZinc benchmarks [36], which correspond451

to the AT [30], BL [3], Pack [8], Pack-d and KSD15-D [26], and PSPLIB [25] suites.452

Given a minimisation objective O, each of the solvers is run with one of the two search453

directions. In the primal search, the solver generates a series of problems with an extra454

assumption JO ≤ onK for decreasing values of on. In the dual search, the solver generates a455

series of problems with an extra assumption JO ≤ onK for increasing values of on.456

We discard all the instances solved by the Pumpkin baseline within five seconds in either457

search direction, leaving us with 736 RCPSP instances and 349 RCPSP/max instances.458

The models we used and the data files are available in the supplementary material. We459

evaluate the rate of progress of a solver towards the best-known bound with the following460

metrics. First, if M(t) is the lowest makespan discovered at time t ∈ [0, T], and M∗ is the461

K. Sidorov, I. Marijnissen, E. Demirović 12:13

lowest discovered makespan for this problem, then the primal integral is
∫ T

0
M(t)−M∗

M(t) and462

measures how fast the solver progresses towards good solutions [6]. Conversely, if B(t) is463

the highest lower bound discovered at time t ∈ [0, T], and B∗ is the highest discovered lower464

bound for this problem, the dual integral is defined as
∫ T

0
B∗−B(t)

B∗ .465

5.1 Ablation Study466

To evaluate the influence of individual components on the performance of the whole approach,467

we ran the disjunctive approach, both in primal and dual search directions, with all sixteen468

combinations of enabling and disabling the following features:469

Cumulative mining Enable the mining for Cumulative as described in Subsection 4.4.470

Nogood mining Enable the mining for nogoods as described in Subsection 4.4.471

Sorting Restrict Ω+ in Algorithm 1 to tasks j with LCTj ≤ mini∈Ω LCTi.472

Propagation Execute the propagation shown in Equation 6 on discovered disjunctive pairs.473

Figure 4a reports the relative gains from enabling each feature. For each feature, we474

consider all combinations of the remaining three features and evaluate the ratio between475

the aforementioned integrals when adding the feature to this configuration and without the476

feature.477

Cum
ula

tiv
e

mini
ng

Nog
oo

d

mini
ngProp

ag
ati

on
So

rti
ng

10-5 100 105

Integral reduction from enabling a feature

Fe
at

ur
e

Integral type Dual Primal

(a) Distribution of ratio of integrals of enabling each evaluated
feature and not enabling the feature. The vertical line in the
middle corresponds to no observed difference, a ratio larger than 1
corresponds to an improvement by using the feature, and values
smaller than 1 correspond to performance degradation.

-5

0

5

10

15

Fewer More
Change of the

number of conflicts

LB
D

ch
an

ge
fr

om
en

ab
lin

g
m

in
in

g

(b) Change in LBD split by change
in # conflicts with cumulative min-
ing compared to baseline; a negat-
ive value indicates a decrease in the
LBD when using mining.

Figure 4 Impact of enabling the listed features on the solver performance.

One of the major takeaways is that cumulative mining has a predominantly negative478

impact on search performance. As we understand, this happens because nogood learning479

derives statements overly specific to the current search state and thus leads to less general480

nogoods. To support this conclusion, we compare the average literal block distance (LBD) [1]481

of nogoods produced3 with and without cumulative mining in Figure 4b, as this metric482

indicates learned nogood quality. In 47% of all pairs of runs, mining leads to fewer conflicts,483

while having a relatively small impact on LBD; however, in the other half of run pairs, mining484

not only increases the number of conflicts but also exhibits a much larger increase in the485

LBD.486

3 If two runs reached different solutions, we compare the number of conflicts to the best common bound.

CP 2025

12:14 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

On the positive side, we have discovered that cumulative mining can be a beneficial487

strategy for instances where many triples of tasks—but few pairs of them—are mutually488

disjoint. In that case, fixing the position of a few tasks can uncover a variety of disjoint489

pairs, aiding the conflict discovery. In particular, this is the case for several instances from490

the Pack-d collection; we ran the mining configuration of our approach on those instances491

and observed that the non-mining implementation discovers few conflicts (and thus makes492

little progress), whereas the mining implementation discovers several bounds tighter than493

reported by all the other approaches (see Appendix D).494

Another takeaway is that the sorting heuristic has a significant influence on the search.495

Enabling it reduces integrals for most instances, suggesting that the bottleneck of our496

approach is the clique search, and most of the iterations of Algorithm 1 do not yield conflicts.497

However, there is a group of instances for which the dual integral degrades by three orders of498

magnitude or more; for this reason, we only use the sorting heuristic when the disjunctive499

approach runs in the primal search direction.500

Last, enabling propagation does not exhibit a consistent change in any direction; the501

primal search can substantially benefit from propagation, but fails to do so consistently, and502

the dual search is left virtually uninfluenced by the propagation. A similar conclusion holds503

for using nogood mining in dual search, albeit the performance of primal search becomes504

consistently worse with nogood mining enabled.505

As a result, we use the following configurations: enable sorting and disable propagation506

and mining for primal search, and disable all additional features for dual search.507

5.2 Scheduling Problem Evaluation508

In order to establish whether our approach is beneficial, we compare the disjunctive approach509

with baseline Pumpkin and CP-SAT v9.11 using the aforementioned integrals.510

We start by evaluating the influence of adding disjointness reasoning to the baseline511

Pumpkin. As seen from Figure 5: (1) the disjunctive approach proves much more successful512

when using dual search as opposed to primal search, and (2) the disjunctive approach513

commonly translates to much larger improvements in cases where it does not hinder the514

search, while it can also degrade the performance on a number of instances. Figure 5b suggests

10-4

10-2

100

102

10-4 10-2 100 102

Primal integral of baseline approach

Pr
im

al
in

te
gr

al
of

di
sj

un
ct

iv
e

ap
pr

oa
ch

(a) Primal integrals.

10-2

100

102

10-4 10-2 100 102

Dual integral of baseline approach

D
ua

li
nt

eg
ra

lo
fd

isj
un

ct
iv

e
ap

pr
oa

chInstance type

at

cd

ksd

la

pack(d)

psplib-max

psplib-std

ubo

(b) Dual integrals.

Figure 5 Comparison of integrals of baseline and disjunctive approaches. Both axes are logarithmic;
lines are evenly spaced and correspond to a tenfold relative change between the integrals.

515

that the disjunctive approach can accelerate the search by at least three orders of magnitude,516

K. Sidorov, I. Marijnissen, E. Demirović 12:15

which indicates that our approach can improve state-of-the-art bounds. Indeed, our approach517

discovers a variety of lower bounds that are both better than the bounds previously reported518

and the bounds discovered by all other evaluated approaches. Appendix D introduces a519

precise criterion for reporting the bounds and the complete list of the novel bounds.520

Remarkably, our approach is able to close five of the previously open RCPSP/max J30521

instances in under a second. For each of those instances, there is a disjoint clique Ω at the522

root level with dΩ equal to the optimal bound. In all five cases, these cliques correspond523

to various resource constraints, making them similar to the aforementioned 3n instances;524

fittingly, CP-SAT has been able to certify only one of them after ten minutes of search,525

whereas the other instances time out with all other approaches. To clarify this point, we526

have reproduced and justified such a clique for one of those instances in Appendix E, thereby527

closing one of the previously open instances without any search.528

Both plots in Figure 5 suggest that instance features have a major influence on the change529

in performance. To establish which instance properties aid our approach, we introduce a530

measure of similarity of a Cumulative constraint to a Disjunctive constraint.531

▶ Definition 17. For a Cumulative constraint over a resource with capacity C, and tasks532

T , we call the quantity RC = 1
|T |
∑

i∈T
ri

C the constrainedness of that Cumulative. Given533

a CSP, we say that its resource constrainedness RC is the maximum constrainedness534

among its cumulative constraints. A larger value indicates more resource contention.535

Figure 6 demonstrates the impact of the resource constrainedness: there is exactly one536

instance with an RC under 15% which benefits from using the disjunctive approach, whereas537

instances with a “scarce” resource (i.e., RC ≥ 40%) account for the largest improvements538

and have the most variability. The performance on the instances between those two values539

mostly degrades, with a small number of instances seeing minor improvements.

≥ 40 %

15—40 %

≤ 15 %

10-2 100 102 104 106
Ratio of the baseline dual integral to the disjunctive dual integral

R
es

ou
rc

e
co

ns
tr

ai
ne

dn
es

s

Figure 6 Distribution of dual integral ratio of baseline and disjunctive approach for various values
of resource constrainedness. Points to the right of the vertical line correspond to improvements by
the disjunctive approach, and points to the left correspond to deterioration.

540

Last, we evaluate our approach against CP-SAT. Figure 7a shows that the baseline541

consistently performs better on PSPLIB, with worse performance on pack(d) instances. On542

the other hand, Figure 7b indicates that the disjunctive approach has a much smaller edge543

against CP-SAT, yet it can improve certain instances by many orders of magnitude.544

6 Conclusions545

We have presented a novel way to aggregate information about the disjointness of tasks546

in scheduling problems across multiple constraints. We do this by creating new variables547

representing the disjointness between pairs of tasks, mining for this disjointness during search,548

and heuristically finding disjoint cliques that lead to conflicts. We show that the “standard”549

approaches require exponentially many conflicts to prove optimality on crafted instances,550

CP 2025

12:16 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

10-4

10-2

100

102

10-2 10-1 100 101 102 103

Dual integral of CP-SAT

D
ua

li
nt

eg
ra

lo
fb

as
el

in
e

ap
pr

oa
ch

(a) Baseline.

10-2

100

102

10-2 10-1 100 101 102 103

Dual integral of CP-SAT

D
ua

li
nt

eg
ra

lo
fd

isj
un

ct
iv

e
ap

pr
oa

chInstance type

at

cd

ksd

la

pack(d)

psplib-max

psplib-std

ubo

(b) Disjunctive.

Figure 7 Comparison of Pumpkin and CP-SAT dual integrals. All axes are logarithmic; lines on
the plots are evenly spaced and correspond to a tenfold relative change.

while our approach can show their infeasibility instantaneously. We also show that our551

approach provides improvements in the order of magnitudes for benchmark instances with552

high resource contention, indicating that reasoning across multiple constraints during search553

is of vital importance for inferring the global structure of instances.554

One direction for future work would be determining what is a good clique. Another555

direction would be to look into incorporating more Disjunctive reasoning over the cliques.556

Additionally, future work could focus on mining jointness rather than disjointness.557

References558

1 Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UNSAT.559

In Proceedings of the 18th international conference on principles and practice of constraint560

programming, pages 118–126, Berlin, Heidelberg, 2012. Springer-Verlag.561

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Satisfiability tests and time-bound562

adjustments for cumulative scheduling problems. Annals of operations research, 92:305–333,563

1999. doi:10.1023/a:1018995000688.564

3 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques565

for highly disjunctive and highly cumulative project scheduling problems. Constraints: an566

international journal, 5(1/2):119–139, January 2000. doi:10.1023/a:1009822502231.567

4 Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In568

Proceedings of the 37th annual symposium on foundations of computer science, FOCS ’96,569

page 274, USA, 1996. IEEE Computer Society.570

5 Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint with571

negative heights. In Proceedings of the 8th international conference on principles and practice572

of constraint programming, CP ’02, pages 63–79, Berlin, Heidelberg, 2002. Springer-Verlag.573

6 Timo Berthold. Measuring the impact of primal heuristics. Operations research letters,574

41(6):611–614, 1 November 2013. doi:10.1016/j.orl.2013.08.007.575

7 Peter Brucker, Sigrid Knust, Arno Schoo, and Olaf Thiele. A branch and bound algorithm for576

the resource-constrained project scheduling problem. European journal of operational research,577

107(2):272–288, 1 June 1998. doi:10.1016/s0377-2217(97)00335-4.578

8 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained pro-579

ject scheduling problem. European journal of operational research, 149(2):314–324, 1 September580

2003. doi:10.1016/s0377-2217(02)00763-4.581

9 Geoffrey Chu, Peter J Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn582

Francis. Chuffed: The chuffed CP solver. https://github.com/chuffed/chuffed.583

https://doi.org/10.1023/a:1018995000688
https://doi.org/10.1023/a:1009822502231
https://doi.org/10.1016/j.orl.2013.08.007
https://doi.org/10.1016/s0377-2217(97)00335-4
https://doi.org/10.1016/s0377-2217(02)00763-4
https://github.com/chuffed/chuffed

K. Sidorov, I. Marijnissen, E. Demirović 12:17

10 Rina Dechter. Learning while searching in constraint-satisfaction-problems. In Proceedings584

of the fifth AAAI national conference on artificial intelligence, AAAI’86, pages 178–183,585

Philadelphia, Pennsylvania, 1986. AAAI Press.586

11 Delft High Performance Computing Centre. DelftBlue, 2024.587

12 Emir Demirović, Maarten Flippo, Imko Marijnissen, Konstantin Sidorov, and Jeff Smits. Pump-588

kin: a lazy clause generation constraint solver in Rust. https://github.com/ConSol-Lab/589

Pumpkin, 2024.590

13 Ulrich Dorndorf. Consistency tests. In Project scheduling with time windows, chapter 4, pages591

31–65. Physica-Verlag HD, Heidelberg, 2002. doi:10.1007/978-3-642-57506-8_4.592

14 Thibaut Feydy and Peter J Stuckey. Lazy clause generation reengineered. In Proceedings of593

the 15th international conference on principles and practice of constraint programming, CP’09,594

pages 352–366, Berlin, Heidelberg, 2009. Springer-Verlag.595

15 John Forrest, Ted Ralphs, Stefan Vigerske, Haroldo Gambini Santos, John Forrest, Lou596

Hafer, Bjarni Kristjansson, jpfasano, EdwinStraver, Jan-Willem, Miles Lubin, rlougee, a-597

andre, jpgoncal, Samuel Brito, h-i-gassmann, Cristina, Matthew Saltzman, tosttost, Bruno598

Pitrus, Fumiaki Matsushima, Patrick Vossler, Ron @ Swgy, and to-st. coin-or/Cbc: Release599

releases/2.10.12, 2024. doi:10.5281/ZENODO.13347261.600

16 Steven Gay, Renaud Hartert, and Pierre Schaus. Time-table disjunctive reasoning for the601

cumulative constraint. In Integration of AI and OR techniques in constraint programming, Lec-602

ture notes in computer science, pages 157–172, Cham, 2015. Springer International Publishing.603

doi:10.1007/978-3-319-18008-3_11.604

17 Gecode Team. Gecode: Generic constraint development environment. http://www.gecode.org,605

2006.606

18 Vincent Gingras and Claude-Guy Quimper. Generalizing the edge-finder rule for the cumulative607

constraint. In Proceedings of the twenty-fifth international joint conference on artificial608

intelligence, IJCAI’16, pages 3103–3109. AAAI Press, 9 July 2016. doi:10.5555/3061053.609

3061056.610

19 Armin Haken. The intractability of resolution. Theoretical computer science, 39:297–308, 1985.611

doi:10.1016/0304-3975(85)90144-6.612

20 Q Huangfu and J A J Hall. Parallelizing the dual revised simplex method. Mathematical613

programming computation, 10(1):119–142, March 2018. doi:10.1007/s12532-017-0130-5.614

21 Joey Hwang and David G Mitchell. 2-way vs. d-way branching for CSP. In Principles and615

practice of constraint programming - CP 2005, Lecture notes in computer science, pages 343–357,616

Berlin, Heidelberg, 1 October 2005. Springer Berlin Heidelberg. doi:10.1007/11564751_27.617

22 Roger Kameugne, Laure Pauline Fotso, Joseph Scott, and Youcheu Ngo-Kateu. A quad-618

ratic edge-finding filtering algorithm for cumulative resource constraints. Constraints: an619

international journal, 19(3):243–269, July 2014. doi:10.1007/s10601-013-9157-z.620

23 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer com-621

putations, pages 85–103, Boston, MA, 1972. Springer US. doi:10.1007/978-1-4684-2001-2\622

_9.623

24 Robert Klein and Armin Scholl. Computing lower bounds by destructive improvement: An624

application to resource-constrained project scheduling. European journal of operational research,625

112(2):322–346, January 1999. doi:10.1016/s0377-2217(97)00442-6.626

25 Rainer Kolisch and Arno Sprecher. PSPLIB - a project scheduling problem library. European627

journal of operational research, 96(1):205–216, January 1997. doi:10.1016/s0377-2217(96)628

00170-1.629

26 Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based MILP630

models for resource-constrained project scheduling problems. Computers & operations research,631

38(1):3–13, 1 January 2011. doi:10.1016/j.cor.2009.12.011.632

27 Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.633

In Handbook of satisfiability, Frontiers in artificial intelligence and applications, chapter 4. IOS634

Press, 2 February 2021. doi:10.3233/faia200987.635

CP 2025

https://github.com/ConSol-Lab/Pumpkin
https://github.com/ConSol-Lab/Pumpkin
https://github.com/ConSol-Lab/Pumpkin
https://doi.org/10.1007/978-3-642-57506-8_4
https://doi.org/10.5281/ZENODO.13347261
https://doi.org/10.1007/978-3-319-18008-3_11
http://www.gecode.org
https://doi.org/10.5555/3061053.3061056
https://doi.org/10.5555/3061053.3061056
https://doi.org/10.5555/3061053.3061056
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/11564751_27
https://doi.org/10.1007/s10601-013-9157-z
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/s0377-2217(97)00442-6
https://doi.org/10.1016/s0377-2217(96)00170-1
https://doi.org/10.1016/s0377-2217(96)00170-1
https://doi.org/10.1016/s0377-2217(96)00170-1
https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.3233/faia200987

12:18 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

28 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.636

Chaff: engineering an efficient SAT solver. In Proceedings of the 38th design automation637

conference. ACM, 2002. doi:10.1109/dac.2001.935565.638

29 Wim Nuijten. Time and resource constrained scheduling: a constraint satisfaction approach.639

PhD thesis, Technische Universiteit Eindhoven, Eindhoven, 1994. doi:10.6100/IR431902.640

30 Ramón Alvarez-Valdés Olaguíbel and José Manuel Tamarit Goerlich. Heuristic algorithms641

for resource-constrained project scheduling: A review and an empirical analysis. Advances in642

project scheduling, pages 113–134, 1989.643

31 Laurent Perron and Frédéric Didier. CP-SAT, 7 May 2024.644

32 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of constraint programming.645

Foundations of artificial intelligence. Elsevier Science, London, England, 18 August 2006.646

doi:10.1016/s1574-6526(06)x8001-x.647

33 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the648

cumulative propagator. Constraints: an international journal, 16(3):250–282, July 2011.649

doi:10.1007/s10601-010-9103-2.650

34 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Solving RCPSP/max651

by lazy clause generation. Journal of scheduling, 16(3):273–289, June 2013. doi:10.1007/652

s10951-012-0285-x.653

35 Peter J Stuckey. RCPSP. https://people.eng.unimelb.edu.au/pstuckey/rcpsp/. Accessed:654

2025-3-29.655

36 Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The656

MiniZinc Challenge 2008–2013. AI magazine, 35(2):55–60, 1 June 2014. doi:10.1609/aimag.657

v35i2.2539.658

37 Petr Vilím. o(n log n) filtering algorithms for unary resource constraint. In Jean-Charles Régin659

and Michel Rueher, editors, Proceedings of CP-AI-OR 2004, volume 3011 of Lecture Notes in660

Computer Science, pages 335–347, Nice, France, April 2004. Springer-Verlag.661

38 Petr Vilím. Computing explanations for the unary resource constraint. In Roman Barták and662

Michela Milano, editors, Integration of AI and OR techniques in constraint programming for663

combinatorial optimization problems, second international conference, CPAIOR 2005, Prague,664

Czech Republic, May 30 - June 1, 2005, volume 3524 of Lecture Notes in Computer Science,665

pages 396–409. Springer, 2005. doi:10.1007/11493853_29.666

39 Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources. In667

Proceedings of the 8th international conference on integration of Ai and OR techniques in668

constraint programming for combinatorial optimization problems, CPAIOR’11, pages 230–245,669

Berlin, Heidelberg, 2011. Springer-Verlag.670

40 Petr Vilím, Philippe Laborie, and Paul Shaw. Failure-directed search for constraint-based671

scheduling. In CPAIOR ’15: proceedings of the 12th international conference on integration672

of AI and OR techniques in constraint programming for combinatorial optimization problems,673

Barcelon, Spain, 2015. Springer-Verlag.674

https://doi.org/10.1109/dac.2001.935565
https://doi.org/10.6100/IR431902
https://doi.org/10.1016/s1574-6526(06)x8001-x
https://doi.org/10.1007/s10601-010-9103-2
https://doi.org/10.1007/s10951-012-0285-x
https://doi.org/10.1007/s10951-012-0285-x
https://doi.org/10.1007/s10951-012-0285-x
https://people.eng.unimelb.edu.au/pstuckey/rcpsp/
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1007/11493853_29

K. Sidorov, I. Marijnissen, E. Demirović 12:19

A Conversion of 3n problem proofs into pigeonhole principle675

pseudo-proofs676

For convenience, we reproduce the definition of the C-RES proof system subject to the677

notation differences between our paper and the work of Hwang and Mitchell [21].678

▶ Definition 18. Given a set of variables X with domains D, a clause is a constraint of the679

form
(∨N

j=1Jx
+
j = v+

j K
)
∨
(∨M

j=1 ¬Jx−
j = v−

j K
)

with x±
j ∈ X , v±

j ∈ D(x).680

▶ Definition 19. Given a CSP (X ,D, C), a sequence of clauses P is an (unsatisfiability)681

proof of this CSP if the last clause is empty, and every clause ω ∈ P is produced by one of682

the following rules:683

Resolution ω can be represented as ω′ ∨ ω′′ for some clauses ω′, ω′′ such that ω′ ∨ Jx = vK684

and ω′′ ∨ ¬Jx = vK are clauses encountered earlier in the proof. We denote the result of685

this operation as ω′ ⋄ ω′′.686

Domain clause ω =
∨

v∈D(x)Jx = vK for some variable x.687

Unique value clause ω = ¬Jx = uK ∨ ¬Jx = vK for some variable x and two distinct values688

u, v ∈ D(x).689

Constraint clause ω is implied by some constraint c ∈ C, that is, any solution satisfying c690

also satisfies ω.691

Each step of the proof is either a “consistency” clause encoding that any variable is692

assigned to exactly one value, a constraint clause (which in our case corresponds to a693

propagation), or a resolution of two clauses (which typically corresponds to branching or694

clause learning). The original C-RES definition by Hwang and Mitchell also restricts C to695

only contain nogoods, and thus the constraint clauses are the negations of nogoods in C.696

Again, that difference does not impact the proof definition, because any constraint can be697

replaced by a set of all nogoods implied by it, which impacts the size of C but not the proof698

length.699

In this appendix, we show that the proofs of 3n instances can be encoded as the proofs700

of the pigeonhole formula [19] with 3n variables, with clauses encoding the pigeonhole701

subformulas for up to 2n variables. We use the following definition of a pigeonhole problem702

in this text:703

▶ Definition 20. A pigeonhole formula PHPm is the unsatisfiable propositional formula704

on (m− 1)×m variables pi,j , 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m having the following clauses:705

Pigeon clauses Any pigeon is placed in a hole: p1,i ∨ p2,i ∨ · · · ∨ pm−1,i ∀1 ≤ i ≤ m− 1.706

Hole clauses No hole contains two pigeons: p̄i,j ∨ p̄i,k ∀1 ≤ i ≤ m− 1, 1 ≤ j < k ≤ m.707

To simplify the description of the encoding, we switch to a more lenient notion of a proof708

proposed by Beame and Pitassi [4]:709

▶ Definition 21. Given a formula PHPm, an assignment α is called critical if some (m− 1)710

pigeons are assigned to (m− 1) distinct holes, that is, p1,π1 , . . . , pm−1,πm−1 are satisfied by711

α for some pairwise different πj ∈ [1, m], 1 ≤ j ≤ m − 1; if additionally the only assigned712

pigeon has index k, then α is called k-critical.713

A pair of clauses ω′, ω′′ is congruent if ω′ and ω′′ are equal for any critical assignment.714

If any critical assignment satisfying clauses ω′ and ω′′ also satisfies another clause ρ, then715

this clause is a critical implication by ω′ and ω′′.716

CP 2025

12:20 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

One of the immediate simplifications resulting from the notion of congruency is that we717

can assume without loss of generality that all clauses defined on pigeonhole variables are718

defined without negations:719

▶ Proposition 22 (Beame and Pitassi [4], Section 3). Given a formula PHPm, any clause ω is720

congruent to a positive clause ω+ obtained by replacing all literals p̄i,j ∈ ω with a negative721

polarity by the conjunction p̄i,j 7→
∨

k∈[1,m],k ̸=i pi,k of variables over all pigeons except the722

i-th one.723

The core result of this appendix is the reduction from 3n proofs to pigeonhole proofs:724

▶ Lemma 23. Any proof P of a 3n problem instance can be encoded into a sequence of725

clauses P ′ with |P ′| ≤ |P| such that the final clause is empty and any clause is either a726

pigeon clause4 of PHP3n, a critical implication of previous clauses, or a subproblem clause727

of the form728

σ(K, V) :=
∨

k∈[1,3n−1]\K,v∈V

pk,v, |V | > |K| (7)729

with 1 < |V | ≤ 2n.730

We start by replacing the original 3n problem with a simpler formulation that does not731

invalidate unsatisfiability proofs of 3n problems.732

▶ Definition 24. Given a set of variables X, the Alldifferent(X) constraint is true for733

the solutions in which any two distinct variables x, y ∈ X are assigned to different values.734

▶ Lemma 25. Any proof of a 3n problem instance is also a proof of a CSP on the same735

variables and constraints Alldifferent(G) with G ∈ {X ∪ Y, Y ∪ Z, Z ∪X}.736

Proof. Let P be a proof of the 3n problem instance, and ω is a constraint clause in P with737

respect to the original 3n instance. We show that this is also a constraint clause with respect738

to the CSP in the lemma statement. This is sufficient to show that P is also a valid proof of739

the new problem, because the resolution steps only depend on the previous clauses. As for740

the domain and unique value clauses, they only depend on the underlying variable definitions,741

which are the same between two problem instances, and are also valid for the new problem742

instance.743

Without loss of generality, suppose that a clause ω is implied by the first constraint in744

Definition 5. Consider an arbitrary solution I that falsifies ω and thus also falsifies the745

Cumulative constraint in question. Any overflow of such a constraint can be described as746

either scheduling two tasks from X in parallel, scheduling one task from X and one task747

from Y in parallel, or scheduling three tasks from Y in parallel. In each case, this assignment748

violates the Alldifferent(X ∪Y). Thus, Alldifferent(X ∪Y) is false whenever ω is false,749

or, in other words, ω is true whenever Alldifferent(X ∪ Y) is true. ◀750

We now complete the reduction to pigeonhole proofs as follows:751

Proof of Lemma 23. Introduce a one-to-one mapping between atomic predicates in P and752

pigeonhole variables with Jxj = vK↔ pv,j for some ordering of variables X = {x1, . . . , x3n};753

we further refer to this as the canonical mapping. We show that the proof P ′ produced by754

4 Hole clauses are tautological with respect to critical assignments.

K. Sidorov, I. Marijnissen, E. Demirović 12:21

(i) replacing atomic constraints in C-RES clauses with canonical mapping and (ii) discarding755

tautologies satisfies the lemma conditions. More specifically, we show that each clause756

ωP ∈ P ′ produced from a C-RES clause ωC ∈ P either falls into one of the three stated757

categories or is tautologically true. Additionally, we enforce the following invariant: if a758

non-tautological clause ωC is falsified by an assignment I of (3n− 1) variables to (3n− 1)759

different values, then the critical assignment produced from it by canonical mapping falsifies760

ωP .761

We start with the “consistency” clauses. If ωC = Jxk = 1K∨· · ·∨Jxk = 3n−1K is a domain762

clause, then ωP = p1,k ∨ · · · ∨ p3n−1,k is a valid clause in P ′ as a pigeon clause of PHP3n.763

Additionally, if I falsifies ωP , that means that xk is unassigned; the canonical mapping leaves764

k-th pigeon unassigned, which falsifies ωP . On the other hand, if ωC = ¬Jxk = uK∨¬Jxk = vK765

is a unique value clause, then ωP = p̄u,k ∨ p̄v,k is true for any critical assignment and is thus766

a tautology.767

Next, consider the case when ωC is a constraint clause. By Lemma 25, we can768

assume without loss of generality that ωC ∈ P is a constraint clause with respect to769

Alldifferent(X ∪ Y). Thus, if ωC is false, then any assignment of X ∪ Y assigns the770

same values to some two variables in this set. By Hall’s theorem, that means that there771

is a set of variables Q ⊆ X ∪ Y with indices V and a set of values K ⊂ [1, 3n − 1] such772

that |K| < |V | ≤ 2n and assigning all variables in Q to values in K falsifies ωC . Con-773

versely, that means that assigning some variable in Q to a value outside of K, equivalently, in774

K̄ = [1, 3n−1]\K satisfies ωC . We have encoded a condition
∨

v∈V (xv /∈ K) =
∨

v∈V (xv ∈ K̄)775

implying ωC , which after applying the canonical mapping becomes ωP =
∨

k∈K̄,v∈V pk,v and776

can be directly added to the proof, since it coincides with σ(K, V) from Equation 7.777

Last, suppose that ωC = ω′′
C⋄ω′′

C is a resolution of some previously introduced propositional778

clauses ω′
C , ω′′

C . Let ω′
P and ω′′

P be the corresponding clauses in P ′; suppose first that neither779

of those clauses was skipped. In that case, we observe the encoding ωP of ωC is critically780

implied by ω′
P and ω′′

P : otherwise, there would be a critical assignment α satisfying both ω′
P781

and ω′′
P but falsifying ωP , and applying the canonical mapping to it yields an assignment782

I satisfying ω′
C and ω′

C but falsifying ωC , contradicting the soundness of the resolution783

step. In case when one (or both) of the original clauses is a tautology, the same reasoning784

holds, because resolving with a tautological clause does not increase the set of falsifying785

assignments. ◀786

B Exponential lower bound on pigeonhole proofs787

We start with an auxiliary fact that establishes a lower bound on the width of a valid proof:788

▶ Lemma 26. Let n ∈ N≥1, 0 < γ ≤ 1, and consider a sequence P such that any clause in789

it is either a pigeon clause of PHP(2+γ)n, a critical implication of the previous clauses, or790

a subproblem clause σ(K, V), 1 ≤ |K| < |V | ≤ 2n. Then P has a clause with at least 2γn2
791

literals.792

Proof. Given a clause ω, let Complexity(ω) be the smallest number of pigeon clauses that793

imply ω on all critical assignments; in particular, Complexity(ω) = 1 for all pigeon clauses794

ω ∈ PHP(2+γ)n, Complexity(⊥) = (2 + γ)n, and Complexity(σ(K, V)) = |V |.795

Observe that a proof contains a clause ω̂ of complexity greater than γn and not greater796

than 2n. To verify this, let V ∗ ≤ 2n be the largest cardinality of a set V used in a subproblem797

clause. If V ∗ > γn, then the subproblem clause that achieves this bound also satisfies the798

complexity bound. Otherwise, assume that this is not the case and that all proof clauses799

CP 2025

12:22 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

have complexity that is either at most γn or more than 2n. Observe that if ω is critically800

implied by ω′ and ω′′, then Complexity(ω) ≤ Complexity(ω′) + Complexity(ω′′), since the801

implication relation is transitive. As the formula clauses have complexity 1 and subproblem802

clauses have complexity at most γn, then all their resolvents ω have to have the complexity803

of at most γn: otherwise, Complexity(ω) ≤ γn + γn ≤ 2n violates our assumption. But then804

the same bound has to hold for the resolvents of those resolvents, and so on until the empty805

clause, which has complexity (2 + γ)n > 2n, which is a contradiction.806

We complete the proof by demonstrating that this clause satisfies the lemma conditions.807

Let Ω̂ be the set of formula clauses that implies ω̂ such that γn < |Ω̂| ≤ 2n; observe that808

ω̂ has at least |Ω̂|
(
(2 + γ)n − |Ω̂|

)
literals [4, Lemma 1], and this expression achieves the809

smallest value 2γn2 at the endpoints of the interval on |Ω̂|. ◀810

We now derive an exponential bound on the proof length of PHP3n with extra clauses:811

▶ Lemma 27. Let n ∈ N≥1, and consider a sequence of clauses P such that any clause is812

either a pigeon clause of PHP3n, a resolution of the previous clauses, or a subproblem clause813

σ(K, V) with 1 ≤ |K| < |V | ≤ 2n. Then P has at least 20.08n clauses for sufficiently large n.814

Proof. Suppose this is not the case, and we discovered a proof of length L < 20.08n. For the815

rest of the proof, we say that the clause is long if it has at least n2 literals. By pigeonhole816

principle, there is a variable xi,j that is contained in at least Ln2

3n(3n−1) ≥
1
9 L long clauses.817

Observe that setting xi,j = 1 with xk,j = xi,ℓ = 0 for all k ̸= i, ℓ ̸= j and discarding all818

satisfied clauses from both the proof and the formula yields a proof of a PHP3n−1 with the819

same assumptions on subproblem clauses but having at most 8
9 L long clauses.820

Repeating this variable elimination procedure for T = ⌈log9/8 L⌉ steps yields a proof of821

PHP3n−T with at most
(8

9
)T

L < 1 long clause, or, in other words, no long clauses. On the822

other hand, we have a pigeonhole formula with 3n− T = 3n−⌈0.08n× log9/8 2⌉ ≥
(
2 + 1

2
)

n823

variables and a proof with no clauses of length at least n2. However, we can now rewrite824

3n− T = γ̂n with γ̂ ≥ 1/2 and apply Lemma 26, which implies that the proof in question825

has to have a clause with at least 2γ̂n2 ≥ n2 literals. That is a contradiction, therefore, P826

has to have length of at least 20.08n. ◀827

The derivation of the intractability theorem bound is a compilation of the results above:828

Proof of Theorem 6. Let P ′ be the pigeonhole formula proof produced from P from829

Lemma 23 with |P| ≥ |P ′|. By Lemma 27, we can rewrite the bound further as |P| = Ω(20.08n),830

and the theorem bound follows from the 1.05 < 20.08 inequality. ◀831

C Explanations832

Assume without loss of generality that ESTi ≤ ESTj , as otherwise the tasks i and j can be833

swapped. Then we generate the explanations Esn(si, sj , pi, pj) as prescribed by Table 1.834

The common idea behind the listed explanations is to lift the bounds in a way that ensures835

the absence of overlap when one of the two predicates is true. For example, if pi = Jsi ≤ viK836

and pj = Jsj ̸= vjK, then the first predicate Jsj ≥ vi + diK in the explanation states the837

following fact: ‘if pi is true then sj starts only after task i has ended’. Similarly, the second838

predicate Jsi ≤ vj − di + 1K in the explanation states that task i should end before task j839

starts; we add an extra unit of time since we know that Jsj ̸= vjK =⇒ Jsj ≥ vj + 1K.840

K. Sidorov, I. Marijnissen, E. Demirović 12:23

Table 1 List of explanations Esn(si, sj , pi, pj) produced for each pair of atomic constraints pi, pj .

Atomic predicate pi Atomic predicate pj Explanation Esn(si, sj , pi, pj)

Jsi ≤ viK Jsj ≥ vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK
Jsi ≤ viK Jsj ̸= vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − di + 1K
Jsi ≤ viK Jsj = vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK
Jsi ̸= viK Jsj ≥ vjK Jsj ≥ vi + di − 1K ∧ Jsi ≤ vj − diK
Jsi ̸= viK Jsj ̸= vjK Jsj ≥ vi + di − 1K ∧ Jsi ≤ vj − di + 1K
Jsi ̸= viK Jsj = vjK Jsj ≥ vi + di − 1K ∧ Jsi ≤ vj − diK
Jsi = viK Jsj ≥ vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK
Jsi = viK Jsj ̸= vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − di + 1K
Jsi = viK Jsj = vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK

D Novel bounds841

We report the bounds discovered by our approach if they are both better than the previous842

reported bounds and are not directly reproducible without using our approach. More precisely,843

we report bounds that are simultaneously (a) tighter than the bounds reported in the previous844

sources known to us that used the same benchmarks [25, 40, 39, 35], and (b) either tighter845

than any bound derived by non-disjunctive approaches (CP-SAT and baseline Pumpkin) or846

matches it but was derived at least ten times faster than with any other approach.847

Novel upper bounds (makespans) are reported in Table 2, and novel lower bounds are848

reported in Table 3; the same data is available as supplementary materials. All durations849

reported in both tables are in MM:SS format; Table 3 additionally reports closed instances850

and bounds derived with mining. To indicate the remaining optimality gap, we also state the851

best known lower bound in Table 2 and the best known makespan in Table 3; in either case,852

that bound is the tightest among the previously reported values and the values discovered853

by non-disjunctive approaches.854

Table 2 Novel upper bounds derived with our approach.

Problem Collection # Ref. objective Our objective Time Best bound

RCPSP/max C 61 378 374 07:03 345
RCPSP/max C 69 380 371 08:47 356

RCPSP J90 5-4 103 102 01:02 101
RCPSP J120 27-7 125 124 08:21 122
RCPSP J120 46-10 188 187 57:34 184
RCPSP J120 9-4 87 86 06:40 85

E Optimality proof for the RCPSP/max instance #64 of collection855

J30856

In this appendix, we support the optimality claim on instance # 64 from the J30 collection857

by showing that the tasks with indices Ω = {1, . . . , 9, 11, . . . , 30} are pairwise disjoint, which858

implies optimality since
∑

t∈Ω dt = 169. This instance has five resources, each with the859

capacity of five units.860

CP 2025

12:24 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Table 3 Novel lower bounds derived with our approach. Rows with an asterisk highlight closed
instances; rows with a dagger highlight objective values derived with enabled mining.

Problem Collection # Ref. bound Our bound Time Best objective

RCPSP/max J30 64 141 169* < 1s 169
RCPSP/max J30 65 144 162* < 1s 162
RCPSP/max J30 151 142 157* < 1s 157
RCPSP/max J30 153 163 176* < 1s 176
RCPSP/max J30 155 125 154* < 1s 154
RCPSP/max UBO50 10 154 186* 00:05 186
RCPSP/max UBO100 4 303 365 44:07 376
RCPSP/max UBO100 7 281 373 51:47 395
RCPSP/max UBO100 8 364 376 29:06 385
RCPSP/max UBO100 32 353 414 53:52 434
RCPSP/max UBO100 33 328 397 47:04 406
RCPSP/max UBO200 35 610 747 57:27 823
RCPSP/max UBO200 62 621 702 56:46 796
RCPSP/max UBO500 36 1 285 1 423 26:37 1 908
RCPSP/max UBO500 61 1 296 1 533 59:50 1 944
RCPSP/max UBO500 64 1 329 1 489 55:08 1 932

RCPSP J120 46-9 157 159 18:58 166
RCPSP Pack-d 2 745 746† 25:39 747
RCPSP Pack-d 3 624 625†* 13:54 625
RCPSP Pack-d 47 2 740 2 742† 52:35 2 745

Table 4 Disjointness justifications for every pair of tasks in Ω1 ∪ Ω2 ∪ Ω3.

Ω1 Ω2 Ω3

Ω1 #2: 4 + 4 #5: 2 + 4 #1: 2 + 4
Ω2 — #5: 4 + 4 #5: 2 + 4
Ω3 — — #1: 4 + 4

To decrease the number of considered pairs, we partition the claimed clique into six parts861

and record for each of them the lowest amount of each resource consumed by a task:862

1. Ω1 = {6, 11, 21, 24}; lowest resource consumption is (2, 4, 1, 2, 2).863

2. Ω2 = {18, 23, 28}; lowest resource consumption is (2, 1, 2, 2, 4).864

3. Ω3 = {30}; lowest resource consumption is (4, 1, 3, 2, 1).865

4. Ω4 = {1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 25, 29}; lowest resource consumption is866

(1, 1, 1, 4, 1).867

5. Ω5 = {7}; lowest resource consumption is (3, 5, 1, 1, 2).868

6. Ω6 = {22, 26, 27}; lowest resource consumption is (1, 1, 5, 1, 2).869

The last two groups consume 100% of either resource #2 or resource #3; since all other870

tasks consume some amount of all resources, any pair of tasks involving a task in Ω5 ∪ Ω6 is871

disjoint. The same holds for any pair of tasks involving Ω4 and any task in Ω1 ∪ · · · ∪ Ω4872

due to the overflow of resource #4. Thus, it remains to show that any pair of tasks in873

Ω1 ∪ Ω2 ∪ Ω3 is disjoint. Table 4 handles the six cases for all remaining pairs of task groups.874

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Our Contribution: Finding Disjunctive Cliques
	4.1 Motivating Example: 3n Problem
	4.2 SelectiveDisjunctive Constraint
	4.3 Overload checking for SelectiveDisjunctive
	4.4 Disjointness mining

	5 Experiments
	5.1 Ablation Study
	5.2 Scheduling Problem Evaluation

	6 Conclusions
	A Conversion of 3n problem proofs into pigeonhole principle pseudo-proofs
	B Exponential lower bound on pigeonhole proofs
	C Explanations
	D Novel bounds
	E Optimality proof for the RCPSP/max instance #64 of collection J30

